

ENERGY STAR[®] Program Requirements Product Specification for Computer Servers

Eligibility Criteria Draft 1 Version 3.0

Following is the Version 3.0 ENERGY STAR Product Specification for Computer Servers. A product shall
 meet all of the identified criteria if it is to earn the ENERGY STAR.

3 1 DEFINITIONS

4 A) <u>Product Types</u>:

 client devices (e.g., desktop computers, notebook computers, thin clients, wii PDAs, IP telephones, other computer servers, or other network devices). A c is sold through enterprise channels for use in data centers and office/corpora A computer server is primarily accessed via network connections, versus directions 		<u>mputer Server</u> : A computer that provides services and manages networked resources for ent devices (e.g., desktop computers, notebook computers, thin clients, wireless devices, As, IP telephones, other computer servers, or other network devices). A computer server cold through enterprise channels for use in data centers and office/corporate environments. computer server is primarily accessed via network connections, versus directly-connected er input devices such as a keyboard or mouse. For purposes of this specification, a nputer server must meet all of the following criteria:	
12		Α.	is marketed and sold as a Computer Server;
13 14		В.	is designed for and listed as supporting one or more computer server operating systems (OS) and/or hypervisors;
15 16		C.	is targeted to run user-installed applications typically, but not exclusively, enterprise in nature;
17 18 19		D.	provides support for error-correcting code (ECC) and/or buffered memory (including both buffered dual in-line memory modules (DIMMs) and buffered on board (BOB) configurations).
20		E.	is packaged and sold with one or more ac-dc or dc-dc power supplies; and
21 22		F.	is designed such that all processors have access to shared system memory and are visible to a single OS or hypervisor.
23 24 25	2)	ma	naged Server: A computer server that is designed for a high level of availability in a highly naged environment. For purposes of this specification, a managed server must meet the owing criteria:
26		Α.	is designed to be configured with redundant power supplies; and
27		В.	contains an installed dedicated management controller (e.g., service processor).
28 29 30 31	servers cer servers are	tified still	ing the current data set, EPA has not found any examples of unmanaged computer d as ENERGY STAR. EPA welcomes stakeholder feedback on whether unmanaged sold outside of the ENERGY STAR program, or whether all current computer servers on in scope meet the Managed Server definition, making the definition above obsolete.
32 33 34 35	3)	ser pro	Ide System: A system comprised of a blade chassis and one or more removable blade vers and/or other units (e.g., blade storage, blade network equipment). Blade systems wide a scalable means for combining multiple blade server or storage units in a single closure, and are designed to allow service technicians to easily add or replace (hot-swap)

36	b	plades in the field.
37 38 39 40 41	A	A. <u>Blade Server</u> : A computer server that is designed for use in a blade chassis. A blade server is a high-density device that functions as an independent computer server and includes at least one processor and system memory, but is dependent upon shared blade chassis resources (e.g., power supplies, cooling) for operation. A processor or memory module that is intended to scale up a standalone server is not considered a Blade Server.
42 43		 Multi-bay Blade Server: A blade server requiring more than one bay for installation in a blade chassis.
44 45		(2) Single-wide Blade Server: A blade server requiring the width of a standard blade server bay.
46 47		(3) Double-wide Blade Server. A blade server requiring twice the width of a standard blade server bay.
48 49		(4) Half-height Blade Server: A blade server requiring one half the height of a standard blade server bay.
50 51		(5) Quarter-height Blade Server. A blade server requiring one quarter the height of a standard server bay.
52 53		(6) Multi-Node Blade Server: A blade server which has multiple nodes. The blade server itself is hot swappable, but the individual nodes are not.
54 55 56 57	E	Blade Chassis: An enclosure that contains shared resources for the operation of blade servers, blade storage, and other blade form-factor devices. Shared resources provided by a chassis may include power supplies, data storage, and hardware for dc power distribution, thermal management, system management, and network services.
58 59 60	(C. <u>Blade Storage</u> : A storage device that is designed for use in a blade chassis. A blade storage device is dependent upon shared blade chassis resources (e.g., power supplies, cooling) for operation.
61 62 63 64 65 66	r id C	<u>Fully Fault Tolerant Server</u> : A computer server that is designed with complete hardware redundancy, in which every computing component is replicated between two nodes running dentical and concurrent workloads (i.e., if one node fails or needs repair, the second node can run the workload alone to avoid downtime). A fully fault tolerant server uses two systems to simultaneously and repetitively run a single workload for continuous availability in a mission critical application.
67 68 69 70 71	s S	Resilient Server: A computer server designed with extensive Reliability, Availability, Serviceability (RAS) and scalability features integrated in the micro architecture of the system, CPU and chipset. For purposes of ENERGY STAR certification under this specification, a Resilient Server shall have the characteristics as described in Appendix B of this specification.
72 73 74 75	r p	<u>Multi-node Server</u> : A computer server that is designed with two or more independent server nodes that share a single enclosure and one or more power supplies. In a multi-node server, sower is distributed to all nodes through shared power supplies. Server nodes in a multi-node server are not designed to be hot-swappable.
76 77	A	 <u>Dual-node Server</u>: A common multi-node server configuration consisting of two server nodes.
78 79 80 81 82 83 84	t s	Server Appliance: A computer server that is bundled with a pre-installed OS and application software that is used to perform a dedicated function or set of tightly coupled functions. Server appliances deliver services through one or more networks (e.g., IP or SAN), and are cypically managed through a web or command line interface. Server appliance hardware and software configurations are customized by the vendor to perform a specific task (e.g., name services, firewall services, authentication services, encryption services, and voice-over-IP (VoIP) services), and are not intended to execute user-supplied software.

85 86 87 88 89 90	8) <u>High Performance Computing (HPC) System</u> : A computing system which is designed and optimized to execute highly parallel applications. HPC systems feature a large number of clustered homogeneous nodes often featuring high speed inter-processing interconnects as well as large memory capability and bandwidth. HPC systems may be purposely built, or assembled from more commonly available computer servers. HPC systems must meet ALL the following criteria:
91 92	 A. Marketed and sold as a Computer Server optimized for higher performance computing applications;
93	B. Designed (or assembled) and optimized to execute highly parallel applications;
94 95	 Consist of a number of typically homogeneous computing nodes, clustered primarily to increase computational capability;
96	D. Includes high speed inter-processing interconnections between nodes.
97 98	 Direct Current (dc) Server: A computer server that is designed solely to operate on a dc power source.
99 100 101	 Large Server: A resilient/scalable server which ships as a pre-integrated/pre-tested system housed in one or more full frames or racks and that includes a high connectivity I/O subsystem with a minimum of 32 dedicated I/O slots.
102 103	Note : EPA has removed the "Product Category" definition found in Version 2.1 as it is considered redundant and is not used within the specification.
104	B) <u>Computer Server Form Factors</u> :
105 106 107 108	 <u>Rack-mounted Server</u>: A computer server that is designed for deployment in a standard 19- inch data center rack as defined by EIA-310, IEC 60297, or DIN 41494. For the purposes of this specification, a blade server is considered under a separate category and excluded from the rack-mounted category.
109 110 111	 Pedestal Server: A self-contained computer server that is designed with PSUs, cooling, I/O devices, and other resources necessary for stand-alone operation. The frame of a pedestal server is similar to that of a tower client computer.
112	C) <u>Computer Server Components</u> :
113 114 115 116	 Power Supply Unit (PSU): A device that converts ac or dc input power to one or more dc power outputs for the purpose of powering a computer server. A computer server PSU must be self-contained and physically separable from the motherboard and must connect to the system via a removable or hard-wired electrical connection.
117 118	A. <u>Ac-Dc Power Supply</u> : A PSU that converts line-voltage ac input power into one or more dc power outputs for the purpose of powering a computer server.
119 120 121 122 123	B. <u>Dc-Dc Power Supply</u> : A PSU that converts line-voltage dc input power to one or more dc outputs for the purpose of powering a computer server. For purposes of this specification, a dc-dc converter (also known as a voltage regulator) that is internal to a computer server and is used to convert a low voltage dc (e.g., 12 V dc) into other dc power outputs for use by computer server components is not considered a dc-dc power supply.
124 125 126 127 128 129 130 131	C. <u>Single-output Power Supply</u> : A PSU that is designed to deliver the majority of its rated output power to one primary dc output for the purpose of powering a computer server. Single-output PSUs may offer one or more standby outputs that remain active whenever connected to an input power source. For purposes of this specification, the total rated power output from any additional PSU outputs that are not primary and standby outputs shall be no greater than 20 watts. PSUs that offer multiple outputs at the same voltage as the primary output are considered single-output PSUs unless those outputs (1) are generated from separate converters or have separate output rectification stages, or (2)

132		have independent current limits.
133 134 135 136 137 138		D. <u>Multi-output Power Supply</u> : A PSU that is designed to deliver the majority of its rated output power to more than one primary dc output for the purpose of powering a computer server. Multi-output PSUs may offer one or more standby outputs that remain active whenever connected to an input power source. For purposes of this specification, the total rated power output from any additional PSU outputs that are not primary and standby outputs is greater than or equal to 20 watts.
139 140 141 142 143	2)	<u>I/O Device</u> : A device which provides data input and output capability between a computer server and other devices. An I/O device may be integral to the computer server motherboard or may be connected to the motherboard via expansion slots (e.g., PCI, PCIe). Examples of I/O devices include discrete Ethernet devices, InfiniBand devices, RAID/SAS controllers, and Fibre Channel devices.
144 145 146		A. <u>I/O Port</u> : Physical circuitry within an I/O device where an independent I/O session can be established. A port is not the same as a connector receptacle; it is possible that a single connector receptacle can service multiple ports of the same interface.
147 148 149	3)	<u>Motherboard</u> : The main circuit board of the server. For purposes of this specification, the motherboard includes connectors for attaching additional boards and typically includes the following components: processor, memory, BIOS, and expansion slots.
150 151 152 153 154	4)	<u>Processor</u> : The logic circuitry that responds to and processes the basic instructions that drive a server. For purposes of this specification, the processor is the central processing unit (CPU) of the computer server. A typical CPU is a physical package to be installed on the server motherboard via a socket or direct solder attachment. The CPU package may include one or more processor cores.
155 156	5)	Memory: For purposes of this specification, memory is a part of a server external to the processor in which information is stored for immediate use by the processor.
157 158 159 160 161 162	6)	<u>Storage Device</u> : A collective term for disk drives (HDDs), solid state drives (SSDs), tapes cartridges, and any other mechanisms providing non-volatile data storage. This definition is specifically intended to exclude aggregating storage elements such as RAID array subsystems, robotic tape libraries, filers, and file servers. Also excluded are storage devices which are not directly accessible by end-user application programs, and are instead employed as a form of internal cache.
163 164 165 166	harmonizin 1.0 specific	is proposing to consolidate the previous HDD and SSD definitions from Version 2.1 by g with the Storage Device definition found in the ENERGY STAR Data Center Storage Version ation. This definition captures newer non-volatile technologies not covered by the previous SD definitions. EPA welcomes stakeholder feedback on this change.
167	D) Other E	Datacenter Equipment:
168 169 170 171	1)	<u>Network Equipment</u> : A device whose primary function is to pass data among various network interfaces, providing data connectivity among connected devices (e.g., routers and switches). Data connectivity is achieved via the routing of data packets encapsulated according to Internet Protocol, Fibre Channel, InfiniBand or similar protocol.
172 173 174 175 176 177 178 179 180	2)	Storage Product: A fully-functional storage system that supplies data storage services to clients and devices attached directly or through a network. Components and subsystems that are an integral part of the storage product architecture (e.g., to provide internal communications between controllers and disks) are considered to be part of the storage product. In contrast, components that are normally associated with a storage environment at the data center level (e.g., devices required for operation of an external SAN) are not considered to be part of the storage product. A storage product may be composed of integrated storage controllers, storage devices, embedded network elements, software, and other devices. While storage products may contain one or more embedded processors, these

181 182		processors do not execute user-supplied software applications but may execute data-specific applications (e.g., data replication, backup utilities, data compression, install agents).
183 184 185	3)	<u>Uninterruptible Power Supply (UPS)</u> : Combination of convertors, switches, and energy storage devices (such as batteries) constituting a power system for maintaining continuity of load power in case of input power failure.
186	E) <u>Opera</u>	tional Modes and Power States:
187 188 189 190 191	1)	<u>Idle State</u> : The operational state in which the OS and other software have completed loading, the computer server is capable of completing workload transactions, but no active workload transactions are requested or pending by the system (i.e., the computer server is operational, but not performing any useful work). For systems where ACPI standards are applicable, Idle State correlates only to ACPI System Level S0.
192 193 194 195	2)	<u>Active State</u> : The operational state in which the computer server is carrying out work in response to prior or concurrent external requests (e.g., instruction over the network). Active state includes both (1) active processing and (2) data seeking/retrieval from memory, cache, or internal/external storage while awaiting further input over the network.
196	F) Other	Key Terms:
197 198	1)	Controller System: A computer or computer server that manages a benchmark evaluation process. The controller system performs the following functions:
199		A. start and stop each segment (phase) of the performance benchmark;
200		B. control the workload demands of the performance benchmark;
201 202		 Start and stop data collection from the power analyzer so that power and performance data from each phase can be correlated;
203		D. store log files containing benchmark power and performance information;
204 205		 convert raw data into a suitable format for benchmark reporting, submission and validation; and
206		F. collect and store environmental data, if automated for the benchmark.
207 208	2)	<u>Network Client (Testing)</u> : A computer or computer server that generates workload traffic for transmission to a unit under test (UUT) connected via a network switch.
209 210	3)	<u>RAS Features</u> : An acronym for reliability, availability, and serviceability features. The three primary components of RAS as related to a computer server are defined as follows:
211 212 213		A. Reliability Features: Features that support a server's ability to perform its intended function without interruption due to component failures (e.g., component selection, temperature and/or voltage de-rating, error detection and correction).
214 215 216		B. Availability Features: Features that support a server's ability to maximize operation at normal capacity for a given duration of downtime (e.g., redundancy [both at micro- and macro-level]).
217 218		C. Serviceability Features: Features that support a server's ability to be serviced without interrupting operation of the server (e.g., hot plugging).
219 220 221 222	criteria" fo	has removed the sentence "RAS is sometimes expanded to RASM, which adds manageability und in Version 2.1 based on the note box above questioning the continued need to address illity as a unique functionality, rather than a core functionality of all current computer servers be.
223 224 225	4)	Server Processor Utilization: The ratio of processor computing activity to full-load processor computing activity at a specified voltage and frequency, measured instantaneously or with a short term average of use over a set of active and/or idle cycles.

226 227			<u>vpervisor</u> : A type of hardware virtualization technique that enables multiple guest operating stems to run on a single host system at the same time.
228 229	6)	 Auxiliary Processing Accelerators (APAs): Computing expansion add-in cards insta general-purpose add-in expansion slots (e.g., GPGPUs installed in a PCI slot). 	
230 231 232 233 234	7)	7) <u>Buffered DDR Channel</u> : Channel or Memory Port connecting a Memory Controller to a defined number of memory devices (e.g., DIMMs) in a computer server. A typical comput server may contain multiple Memory Controllers, which may in turn support one or more Buffered DDR Channels. As such, each Buffered DDR Channel serves only a fraction of the total addressable memory space in a computer server.	
235 236 237	chassis	s/mo	amily: A high-level description referring to a group of computers sharing one otherboard combination that often contains hundreds of possible hardware and software ions. Products within a product family may differ in color.
238 239			s clarified that differences in product color are acceptable within a product family, given the previous section titled "Qualifying Families of Products" section in Version 2.1.
240 241 242	1)	wit	ommon Product Family Attributes: A set of features common to all models/configurations thin a product family that constitute a common basic design. All models/configurations thin a product family must share the following:
243		Α.	Be from the same model line or machine type;
244 245 246		B.	Either share the same form factor (i.e., rack-mounted, blade, pedestal) or share the same mechanical and electrical designs with only superficial mechanical differences to enable a design to support multiple form factors;
247 248		C.	Either share processors from a single defined processor series or share processors that plug into a common socket type.
249 250 251 252		D.	Share PSUs that perform with efficiencies greater than or equal to the efficiencies at all required load points specified in Section 3.2 (i.e., 10%, 20%, 50%, and 100% of maximum rated load for single-output; 20%, 50%, and 100% of maximum rated load for multi-output).
253	2)	Pr	oduct Family Tested Product Configurations:
254		Α.	Purchase Consideration Variations:
255 256 257			 Low-end Performance Configuration: The combination of Processor Socket Power, PSUs, Memory, Storage Devices, and I/O devices that represents the lower-price or lower-performance computing platform within the Product Family.
258 259 260 261			(2) <u>High-end Performance Configuration</u> : This configuration shall include the highest processer performance per socket, as represented by the highest numerical value resulting from the multiplication of the processor count by the frequency in GHz, offered for sale and capable of meeting ENERGY STAR requirements. ¹
262		В.	Typical Configuration:
263 264 265			<u>Typical Configuration</u> : A product configuration that lies between the Minimum Power and High-end Performance configurations and is representative of a deployed product with high volume sales.
266		C.	Power Utilization Variations:

¹ Highest processor performance per socket = [# of processor cores] x [processor clock speed (GHz)], where # of cores represents the number of physical cores and processor clock speed represents the Max TDP core frequency as reported by SERT, not the turbo boost frequency.

267
268
269
270

(1) <u>Minimum Power Configuration</u>: The minimum configuration that is able to boot and execute supported OSs. The Minimum Configuration contains the lowest Processor Socket Power, least number of installed PSUs, Memory, Storage Devices, and I/O devices, that is both offered for sale and capable of meeting ENERGY STAR requirements.

272 Note: EPA received stakeholder feedback that the Agency may be able to meet its goal of creating a 273 product family envelope that has sufficient flexibility to allow manufacturers to sell compliant non-tested 274 configurations, while ensuring that all members of the family meet the ENERGY STAR requirements 275 through fewer test points. Stakeholders indicated that this change would reduce testing costs significantly while maintaining the integrity of the program. EPA is concerned that partners will not be able to 276 represent their product families with three points. Further, EPA's dataset shows meaningful differences 277 278 between minimum power and low end performance configurations, supporting the maintenance of the 279 current test points. EPA seeks stakeholder feedback on the ability of three configurations per product 280 family to fully represent that family. EPA also seeks data that makes clear the redundancy of the current 281 test points.

282 **2 SCOPE**

283 2.1 Included Products

 284 2.1.1 A product must meet the definition of a Computer Server provided in Section 1 of this document to be eligible for ENERGY STAR certification under this specification. Eligibility under Version 3.0 is limited to Blade-, Multi-node, Rack-mounted, or Pedestal form factor computer servers with no more than four processor sockets in the computer server (or per blade or node in the case of blade or multi-node servers) Products explicitly excluded from Version 3.0 are identified in Section 2.2.

290 2.2 Excluded Products

- 2.2.1 Products that are covered under other ENERGY STAR product specifications are not eligible for certification under this specification. The list of specifications currently in effect can be found at www.energystar.gov/products.
- 294 2.2.2 The following products are not eligible for certification under this specification:
- i. Fully Fault Tolerant Servers;
- 296 ii. Server Appliances;
- 297 iii. High Performance Computing Systems;
- 298 iv. Large Servers;
- 299 v. Storage Products including Blade Storage; and
- 300 vi. Network Equipment.

301 3 CERTIFICATION CRITERIA

302 3.1 Significant Digits and Rounding

- 303 3.1.1 All calculations shall be carried out with directly measured (unrounded) values.
- 304 3.1.2 Unless otherwise specified, compliance with specification limits shall be evaluated using directly
 305 measured or calculated values without any benefit from rounding.

306 3.1.3 Directly measured or calculated values that are submitted for reporting on the ENERGY STAR
 307 website shall be rounded to the nearest significant digit as expressed in the corresponding
 308 specification limit.

309 **3.2 Power Supply Requirements**

- 310 3.2.1 Power supply test data and test reports from testing entities recognized by EPA to perform power 311 supply testing shall be accepted for the purpose of certifying the ENERGY STAR product.
- 3.2.2 <u>Power Supply Efficiency Criteria</u>: Power Supplies used in products eligible under this specification must meet the following requirements when tested using the *Generalized Internal Power Supply Efficiency Test Protocol, Rev. 6.7* (available at <u>www.efficientpowersupplies.org</u>). Power Supply data generated using Rev. 6.4.2 (as required in Version 1.1), 6.4.3, 6.5, or 6.6 are acceptable provided the test was conducted prior to the effective date of Version 3.0 of this specification.
- 317 i. <u>Pedestal and Rack-mounted Servers</u>: To certify for ENERGY STAR, a pedestal or rack-318 mounted computer server must be configured with **only** PSUs that meet or exceed the 319 applicable efficiency requirements specified in Table 1 **prior to shipment**.
- Blade and Multi-node Servers: To certify for ENERGY STAR, a Blade or Multi-node computer
 server shipped with a chassis must be configured such that all PSUs supplying power to the
 chassis meet or exceed the applicable efficiency requirements specified in Table 1 prior to
 shipment.

324

Power Supply Type	Rated Output Power	10% Load	20% Load	50% Load	100% Load
Multi-output (Ac-Dc)	All Output Levels	N/A	90%	92%	89%
Single-output (Ac-Dc)	All Output Levels	83%	90%	94%	91%

Table 1: Efficiency Requirements for PSUs

Note: EPA is proposing power supply efficiency requirements equivalent to 80Plus platinum in Version
 3.0. Several stakeholders have shared recently that most server products offer a platinum power supply
 option, and 63% of the configurations tested in Version 2.0 already used platinum level power supplies for
 certification purposes. EPA welcomes stakeholder feedback on this proposal.

- 3293.2.3Power Supply Power Factor Criteria: Power Supplies used in Computers Servers eligible under
this specification must meet the following requirements when tested using the Generalized
Internal Power Supply Efficiency Test Protocol, Rev. 6.6 (available at
www.efficientpowersupplies.org). Power Supply data generated using Rev. 6.4.2 (as required in
Version 1.1), 6.4.3, or 6.5 are acceptable provided the test was conducted prior to the effective
date of Version 3.0.
- i. <u>Pedestal and Rack-mounted Servers</u>: To certify for ENERGY STAR, a pedestal or rackmounted computer server must be configured with **only** PSUs that meet or exceed the applicable power factor requirements specified in Table 2 **prior to shipment**, under all loading conditions for which output power is greater than or equal to 75 watts. Partners are required to measure and report PSU power factor under loading conditions of less than 75 watts, though no minimum power factor requirements apply.

343 344

345

346

ii. Blade or Multi-node Servers: To certify for ENERGY STAR, a Blade or Multi-node computer server shipped with a chassis must be configured such that **all** PSUs supplying power to the chassis meet or exceed the applicable power factor requirements specified in Table 2 prior to shipment, under all loading conditions for which output power is greater than or equal to 75 watts. Partners are required to measure and report PSU power factor under loading conditions of less than 75 watts, though no minimum power factor requirements apply.

347

Power Supply Type	Rated Output Power	10% Load	20% Load	50% Load	100% Load
Ac-Dc Multi-output	All Output Ratings	N/A	0.80	0.90	0.95
	Output Rating ≤ 500 W	N/A	0.80	0.90	0.95
Ac-Dc Single-output	Output Rating > 500 W and Output Rating ≤ 1,000 W	0.65	0.80	0.90	0.95
	Output Rating > 1,000 watts	0.80	0.90	0.90	0.95

348

3.3 Power Management Requirements 349

- 350 3.3.1 Server Processor Power Management: To certify for ENERGY STAR, a Computer Server must 351 offer processor power management that is enabled by default in the BIOS and/or through a 352 management controller, service processor, and/or the operating system shipped with the 353 computer server. All processors must be able to reduce power consumption in times of low 354 utilization by:
- 355 reducing voltage and/or frequency through Dynamic Voltage and Frequency Scaling (DVFS), i. 356 or
- 357 enabling processor or core reduced power states when a core or socket is not in use. ii.
- 3.3.2 358 Supervisor Power Management: To certify for ENERGY STAR, a product which offers a pre-359 installed supervisor system (e.g., operating system, hypervisor) must offer supervisor system 360 power management that is enabled by default.
- 361 3.3.3 Power Management Reporting: To certify for ENERGY STAR, all power management techniques 362 that are enabled by default must be itemized on the Power and Performance Data Sheet. This 363 requirement applies to power management features in the BIOS, operating system, or any other origin that can be configured by the end-user. 364

3.4 Blade and Multi-Node System Criteria 365

366 3.4.1 Blade and Multi-Node Thermal Management and Monitoring: To certify for ENERGY STAR, a 367 blade or multi-node server must provide real-time chassis or blade/node inlet temperature 368 monitoring and fan speed management capability that is enabled by default.

369 3.4.2 Blade and Multi-Node Server Shipping Documentation: To certify for ENERGY STAR, a blade or 370 multi-node server that is shipped to a customer independent of the chassis must be accompanied 371 with documentation to inform the customer that the blade or multi-node server is ENERGY STAR 372 qualified only if it is installed in a chassis meeting requirements in Section 3.4.1 of this document. 373 A list of certified chassis and ordering information must also be provided as part of product 374 collateral provided with the blade or multi-node server. These requirements may be met via either 375 printed materials, electronic documentation provided with the blade or multi-node server, or 376 information publically available on the Partner's website where information about the blade or 377 multi-node server is found.

378 **3.5 Active State Efficiency Criteria**

- 379 3.5.1 <u>Active State Efficiency Reporting</u>: To certify for ENERGY STAR, a Computer Server or Computer
 380 Server Product Family must be submitted for certification with the following information disclosed
 381 in full and in the context of the complete Active State efficiency rating test report:
- i. Final SERT rating tool results, which include the results files (in xml, html, and text format)
 and all results-chart png files; and
- ii. Intermediate SERT rating tool results over the entire test run, which include the results-details
 files (in xml, html, and text format) and all results-details-chart png files.
- 386 Data reporting and formatting requirements are discussed in Section 4.1 of this specification.
- 387 Note: Per request from several stakeholders, EPA has added the requirement to include the xml files
 388 generated by the SERT tool in submissions along with the html and text formats. EPA welcomes
 389 stakeholder feedback on whether collecting the xml format eliminates the need to collect the html
 390 formatted files.
- 391 3.5.2 <u>Incomplete Reporting</u>: Partners shall not selectively report individual workload module results, or 392 otherwise present efficiency rating tool results in any form other than a complete test report, in 393 customer documentation or marketing materials.
- 394 3.5.3 Active State Efficiency Requirements: TBD in next draft.
- Note: EPA is engaged in discussions with many stakeholders, including TGG and SPEC, to determine
 potential options for Active State efficiency metrics to make use of the SERT data generated in Version 2.
 EPA will continue to work closely with these groups and plans to release a proposed path forward on
 Active State metrics in Draft 2. EPA strongly encourages manufacturers and other interested
 stakeholders to come to consensus on a path forward in time for the release of the next draft, but if this is
 not accomplished, EPA will develop and propose an approach in Draft 2.
- 401 EPA welcomes additional feedback on the following areas regarding Active State metrics and efficiency 402 requirements:
- 403 1) Should Active State and Idle State criteria remain separated as is currently proposed in Draft 1, or are404 there technical merits to combining them into a single metric?
- 2) What guidance can industry provide end-users to better correlate the SERT worklet scores shown on
 the ENERGY STAR computer servers qualified product list with customer's real life workloads and
 applications? EPA would like to work with industry to develop and/or disseminate guidance for purchasers
 as part of the Version 3.0 process.
- 3) Are the two storage worklets scores in SERT sufficient to differentiate computer server configurations
 from storage products? EPA welcomes feedback on how to more clearly handle computer server
 products which are performing heavy storage duties, particularly in light of the Version 1.1 revision of the
 ENERGY STAR Data Center Storage specification planned for later this year that is expected to expand
 the scope to include network attached storage products.

414 **3.6** Idle State Efficiency Criteria – All One-Socket (1S) and Two-Socket (2S) Servers

3.6.1 Idle State Data Reporting: Idle State power (P_{IDLE}, P_{BLADE}, or P_{NODE}) shall be measured and
reported, both in certification materials and as required in Section 4. In addition, for blade and
multi-node products, P_{TOT_BLADE_SYS} and P_{TOT_NODE_SYS} shall also be reported respectively. Please
see Section 3.8 for details on how to calculate P_{BLADE} and P_{TOT_BLADE_SYS}, and Section 3.9 for
details on how to calculate P_{NODE} and P_{TOT_NODE_SYS}.

420
 421
 421
 421
 3.6. Additional information on how to calculate per blade idle power (P_{BLADE}) and per node idle power
 422
 423
 424
 425
 426
 427
 427
 428
 429
 429
 420
 420
 420
 420
 420
 420
 421
 421
 422
 421
 422
 422
 423
 424
 424
 425
 425
 426
 427
 427
 428
 429
 429
 420
 420
 420
 420
 420
 421
 421
 421
 421
 422
 421
 422
 421
 422
 421
 422
 421
 421
 421
 421
 421
 422
 421
 422
 421
 422
 422
 421
 422
 421
 422
 421
 422
 422
 421
 422
 421
 422
 421
 422
 421
 422
 421
 422
 421
 422
 422
 421
 422
 421
 422
 421
 421
 422
 421
 421
 421
 422
 421
 422
 422
 422
 422
 421
 422
 422
 421
 422
 422
 421
 422
 422
 422
 422
 422
 423

 423
 3.6.2
 Idle State Efficiency: Measured Idle State power (P_{IDLE}, P_{BLADE}, or P_{NODE}) shall be less than or equal to the Maximum Idle State Power Requirement (P_{IDLE_MAX}), as calculated per Equation 1.

Equation 1: Calculation of Maximum Idle State Power

$$P_{\text{IDLE }_MAX} = P_{\text{BASE}} + \sum_{i=1}^{n} P_{\text{ADDL }_i}$$

Where:

425

426

427

428

429 430

431

432

433

437

438

442

443

P_{IDLE_MAX} is the Maximum Idle State Power Requirement,
 P_{BASE} is the base idle power allowance, as determined per Table 3 or Table 4,
 P_{ADDL_i} is the Idle State power allowance for additional components, as determined per 5.

- 434 i. These Idle power limits are applicable to one and two socket systems only.
- 435 ii. Use Section 6.1 of the ENERGY STAR Computer Servers Test Method to determine the Idle
 436 State power for certification.
 - iii. The Resilient category in Table 3 and Table 4 applies only to systems that meet the definition of Resilient Server as set forth in Appendix B.
- iv. All quantities (with the exception of installed processors) in Table 3, Table 4 and, Table 5
 refer to the number of components installed in the system, not the maximum number of
 components the system can support (e.g., installed memory, not supported memory; etc.)
 - The Additional Power Supply allowance may be applied for each redundant power supply used in the configuration.
- 444 vi. For the purposes of determining Idle power allowances, all memory capacities shall be
 445 rounded to the nearest GB²
- 446 vii. The Additional I/O Device allowance may be applied for all I/O Devices over the Base
 447 Configuration (i.e., Ethernet devices additional to two ports greater than or equal to 1 Gigabit
 448 per second (Gbit/s), onboard Ethernet, plus any non-Ethernet I/O devices), including on449 board I/O devices and add-in I/O devices installed through expansion slots. This allowance
 450 may be applied for each of the following types of I/O functionality: Ethernet, SAS, SATA,
 451 Fibre Channel and Infiniband.
- viii. The Additional I/O Device allowance shall be calculated based upon the rated link speed of a single connection, rounded to the nearest Gbit. I/O devices with less than 1 Gbit speed do not qualify for the Additional I/O Device allowance.

² GB defined as 1024³ or 2³⁰ bytes.

ix. The Additional I/O Device allowance shall only be applied for I/O devices that are
active/enabled upon shipment, and are capable of functioning when connected to an active
switch.

Table 3: Base Idle State Power Allowances for all One Socket Servers

Category	Resilient	Base Idle State Power Allowance, P _{BASE} (watts)		
Α	No	37.0		
В	Yes	130		

459

460

Table 4: Base Idle State Power Allowances for all Two Socket Servers

Category	Blade or Multi- Node	Resilient	Base Idle State Power Allowance, P _{BASE} (watts)
С	No	No	85.0
D	Yes	No	105
E	No	Yes	297

461

462
463
464
464
464
465
465
466
466
466
467
467
468
469
469
469
460
460
460
460
461
462
463
464
465
464
465
465
466
466
467
467
467
468
469
469
469
469
460
460
460
460
460
461
462
463
464
464
465
465
466
466
466
467
467
467
468
469
469
469
469
469
469
460
460
460
460
461
461
462
463
464
464
465
465
466
466
466
466
467
467
467
468
469
469
469
469
469
469
460
460
460
461
461
462
462
463
464
464
465
465
466
466
466
466
467
467
468
468
469
469
469
469
469
460
460
460
460
460
460
460
461
461
462
462
463
464
464
465
465
466
466
466
466
466
466
466
466
466
466
466
466
466
466
466
466
466
466
467
467
468
468
468
469
469
469
469

468

Table 5: Additional Idle Power Allowances for Extra Components

System Characteristic	Applies To:	Additional Idle Power Allowance
Additional Power Supplies	Power supplies installed explicitly for power redundancy ^(v)	10 watts per Power Supply
Storage Devices	Per installed storage device	4.0 watts per Storage Device
Additional Memory	Installed memory greater than 4 GB ^(vi)	0.25 watts per GB ^(vi)
Additional Buffered DDR Channel	Installed buffered DDR Channels greater than 8 channels (Resilient Servers only)	4.0 watts per Buffered DDR Channel
Additional I/O Devices ^{(vii),} _{(viii), (ix)}	Installed Devices greater than two ports of ≥ 1 Gbit, onboard Ethernet	 < 1Gbit: No Allowance = 1 Gbit: 2.0 watts / Active Port > 1 Gbit and < 10 Gbit: 4.0 watts / Active Port ≥ 10 Gbit: 8.0 watts / Active Port

⁴⁵⁸

469 Area Note: EPA is proposing the following adder value revisions from the Version 2.0 allowances based on
 470 recent improvements in technology.

471 - Aligning in observed trends in power supply efficiency, EPA changed the Additional Power Supplies
472 adder from 20 watts per power supply to 10 watts.

473 - Recognizing improvements in storage device performance in a range of other products, EPA is
474 proposing changing the Storage Device adder from 8 watts per Storage Device to 4 watts.

475 - Based on understood state of the art performance gathered during the development of Version 2.0, EPA
476 proposes changing the Additional Memory adder from 0.75 watts/GB above 4GB of installed memory to
477 0.25 watts/GB above 4GB of installed memory.

478 EPA intends to set levels such that the revised Idle State energy efficiency requirements above, when
479 combined with the upcoming Active State energy efficiency requirements in Draft 2, will result in
480 recognizing approximately the top quartile of most efficient computer server products on the market. The
481 proposed Idle State requirements above result in an average reduction in P_{IDLE_MAX} of 40 watts for one
482 socket rack servers and 78 watts for two socket rack servers compared to previous Version 2.1 Idle State
483 efficiency requirements.

484 3.7 Idle State Efficiency Criteria – Three-Socket (3S) and Four-Socket (4S) Servers 485 (neither Blade nor Multi-Node)

486 3.7.1 <u>Idle State Data Reporting</u>: Idle State power (P_{IDLE}) shall be measured and 487 reported, both in certification materials and as required in Section 4.

488
 489
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480

491 **3.8 Calculating Idle State Values – Blade Servers**

- 492 3.8.1 The testing of Blade Servers for compliance with Section 3.6.1 shall be carried out under all of the
 493 following conditions:
- i. Power values shall be measured and reported using a half-populated Blade Chassis. Blade
 Servers with multiple power domains, choose the number of power domains that is closest to
 filling half of the Blade Chassis. In a case where there are two choices that are equally close
 to half, test with the domain or combination of domains which utilize a higher number of Blade
 Servers. The number of blades tested during the half-populated Blade Chassis test shall be
 reported.
- 500 ii. Power for a fully-populated blade chassis may be optionally measured and reported, provided 501 that half-populated chassis data is also provided.
- 502 iii. All Blade Servers installed in the Blade Chassis shall share the same configuration503 (homogeneous).
- 504 iv. Per-blade power values shall be calculated using Equation 2.

Equation 2: Calculation of Single Blade Power

506

507 508

509

510

505

 $P_{BLADE} = \frac{P_{TOT_BLADE_SYS}}{N_{INST_BLADE_SRV}}$

Where:

 P_{BLADE} is the per-Blade Server Power, $P_{TOT_BLADE_SYS}$ is total measured power of the Blade System,

511 512 513	 N_{INST_BLADE_SRV} is the number of installed Blade Servers in the tested Blade Chassis.
514	3.9 Calculating Idle State Values – Multi-Node Servers
515 516	3.9.1 The testing of Multi-Node Servers for compliance with Section 3.6.1 shall be carried out under all of the following conditions:
517	i. Power values shall be measured and reported using a fully-populated Multi-Node Chassis.
518 519	 All Multi-Node Servers in the Multi-Node Chassis shall share the same configuration (homogeneous).
520	iii. Per-node power values shall be calculated using Equation 3.
521	Equation 3: Calculation of Single Node Power
522	$P_{NODE} = \frac{P_{TOT_NODE_SYS}}{N_{INST_NODE_SRV}}$
523 524 525 526 527	 Where: P_{NODE} is the per-Node Server Power, P_{TOT_NODE_SYS} is total measured power of the Multi-Node Server, N_{INST_NODE_SRV} is the number of installed Multi-Node Servers in the tested Multi-Node Chassis.
528	3.10 Other Testing Criteria
529 530	3.10.1 <u>APA Requirements</u> : For all computer servers sold with APAs, the following criteria and provisions apply:
531 532 533	i. For single configurations: All Idle State testing shall be conducted both with and without the APAs installed. Idle Power measurements taken both with the APAs installed and removed shall be submitted to EPA as part of ENERGY STAR certification materials.
534 535 536	ii. For Product Families: Idle State testing shall be conducted both with and without the APAs installed in the High-end Performance_Configuration found in 1.G)2). Testing with and without the APAs installed may optionally be conducted and disclosed at the other test points.
537 538 539 540	iii. Idle State power measurements taken both with the APAs installed and removed shall be submitted to EPA as part of ENERGY STAR certification materials. These measurements shall be submitted for each individual APA product that is intended for sale with the certified configuration.
541 542 543 544	iv. Measurements of P _{IDLE} in Sections 3.6 and 3.7, P _{BLADE} in Section 3.8 and P _{NODE} in Section 3.9 shall be performed with APAs removed, even if they are installed as-shipped. These measurements shall then be repeated with each APA installed, one at a time, to evaluate Idle State power consumption of each installed APA.
545 546	 The Idle State power consumption of each installed APA in qualified configurations shall not exceed 30 watts.
547 548 549 550 551 552 553 554 555	Note : EPA has reviewed publically available test data on the latest two generations of high performance consumer grade GPUs (price range \$500-1000) and has observed average idle values ranging from 7-15 watts. The same data shows variability with spikes as high as 30 watts and dips below 5 watts while in idle. For this reason, EPA is proposing that the Idle State power consumption requirement for APAs be lowered from 46 watts to the maximum observed energy consumption spikes of the two latest generation high performance cards (30 watts). As proposed, this requirement balances the desire to encourage the use of the latest generations of GPUs with the best performance per watt with the recognition that use of newer APAs can be a more efficient computing approach than general purpose servers for specific workloads.

EPA welcomes stakeholder feedback on if this level is sufficiently aggressive to remove older (typically less energy efficient) generation APAs from consideration without negatively impacting the use of newer APAs.

559 560 vi. The Idle State power consumption of each individual APA product sold with a qualified configuration shall be reported.

561 4 STANDARD INFORMATION REPORTING REQUIREMENTS

562 4.1 Data Reporting Requirements

- 4.1.1 All required data fields in the ENERGY STAR Version 3.0 Computer Servers Qualified Product
 Exchange form shall be submitted to EPA for each ENERGY STAR certified Computer Server or
 Computer Server Product Family.
- 566i.Partners are encouraged to provide one set of data for each ENERGY STAR certified product567configuration, though EPA will also accept a data set for each qualified product family.
- 568 ii. A product family certification must include data for all defined test points in 1.G)2), as 569 applicable.
- 570 iii. Whenever possible, Partners must also provide a hyperlink to a detailed power calculator on
 571 their Web site that purchasers can use to understand power and performance data for
 572 specific configurations within the product family.
- 573 4.1.2 The following data will be displayed on the ENERGY STAR Web site through the product finder tool:
- 575 i. model name and number, identifying SKU and/or configuration ID;
- 576 ii. system characteristics (form factor, available sockets/slots, power specifications, etc.);
- 577 iii. system type (e.g., managed or resilient.);
- iv. system configuration(s) (including Low-end Performance Configuration, High-end
 Performance Configuration, Minimum Power Configuration, and Typical Configuration for
 Product Family certification);
- v. power consumption and performance data from required Active and Idle State Efficiency
 Criteria testing including results.xml, results.html, results.txt, all results-chart png files,
 results-details.html, results-details.txt, results-details.xml, all results-details-chart png files;
- vi. available and enabled power saving features (e.g., power management);
- 585 vii. a list of selected data from the ASHRAE Thermal Report;
- 586 viii. inlet air temperature measurements made prior to the start of testing, at the conclusion of Idle 587 State testing, and at the conclusion of Active State testing;
- 588 ix. for product family certifications, a list of qualified configurations with qualified SKUs or 589 configuration IDs; and
- 590x.for a blade server, a list of compatible blade chassis that meet ENERGY STAR certification591criteria.
- 4.1.3 EPA may periodically revise this list, as necessary, and will notify and invite stakeholder
 engagement in such a revision process.

594 **5 STANDARD PERFORMANCE DATA MEASUREMENT AND OUTPUT** 595 **REQUIREMENTS**

596 5.1 Measurement and Output

- 597 5.1.1 A computer server must provide data on input power consumption (W), inlet air temperature (°C), 598 and average utilization of all logical CPUs. Data must be made available in a published or user-599 accessible format that is readable by third-party, non-proprietary management software over a 600 standard network. For blade and multi-node servers and systems, data may be aggregated at the 601 chassis level.
- 5.1.2 Computer servers classified as Class B equipment as set out in EN 55022:2006 are exempt from the requirements to provide data on input power consumption and inlet air temperature in 5.1.1.
 Class B refers to household and home office equipment (intended for use in the domestic environment). All computer servers in the program must meet the requirement and conditions to report utilization of all logical CPUs.

607 5.2 Reporting Implementation

- 5.2.1 Products may use either embedded components or add-in devices that are packaged with the
 609
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
 610
- 5.2.2 Products that include a pre-installed OS must include all necessary drivers and software for end
 bit of the standard standa
- 5.2.3 When an open and universally available data collection and reporting standard becomes
 available, manufacturers should incorporate the universal standard into their systems;
- 5.2.4 Evaluation of the accuracy (5.3) and sampling (5.4) requirements shall be completed through
 review of data from component product datasheets. If this data is absent, Partner declaration
 shall be used to evaluate accuracy and sampling.

622 5.3 Measurement Accuracy

- 6235.3.1Input power. Measurements must be reported with accuracy of at least $\pm 5\%$ of the actual value,624with a maximum level of accuracy of $\pm 10W$ for each installed PSU (i.e., power reporting accuracy625for each power supply is never required to be better than ± 10 watts) through the operating range626from Idle to full power;
- 5.3.2 *Processor utilization*: Average utilization must be estimated for each logical CPU that is visible to
 the OS and must be reported to the operator or user of the computer server through the operating
 environment (OS or hypervisor);
- 630 5.3.3 Inlet air temperature: Measurements must be reported with an accuracy of at least ±2°C.

631 **5.4 Sampling Requirements**

- 6325.4.1Input power and processor utilization: Input power and processor utilization measurements must633be sampled internally to the computer server at a rate of greater than or equal to measurement634per contiguous 10 second period. A rolling average, encompassing a period of no more than 30635seconds, must be sampled internally to the computer server at a frequency of greater than or636equal to once per ten seconds.
- 6375.4.2Inlet air temperature: Inlet air temperature measurements must be sampled internally to the
computer server at a rate of greater than or equal to 1 measurement every 10 seconds.

- 5.4.3 *Time stamping*: Systems that implement time stamping of environmental data shall sample
 internally to the computer server data at a rate of greater than or equal to 1 measurement every
 30 seconds.
- 5.4.4 *Management Software*: All sampled measurements shall be made available to external
 management software either via an on-demand pull method, or via a coordinated push
 method. In either case the system's management software is responsible for establishing the
 data delivery time scale while the computer server is responsible to assuring data delivered
 meets the above sampling and currency requirements.

647 6 TESTING

648 6.1 Test Methods

649 6.1.1 When testing Computer Server products, the test methods identified in 6 shall be used to determine ENERGY STAR certification.

651

668

669

670

Table 6: Test Methods for ENERGY STAR Certification

Product Type or Component	Test Method
All	ENERGY STAR Test Method for Computer Servers (Rev. April-2016)
All	Standard Performance Evaluation Corporation (SPEC) most current ³ Server Efficiency Rating Tool (SERT)

652 6.1.2 When testing Computer Server products, UUTs must have all Processor Sockets populated 653 during testing.

i. If a Computer Server cannot support populating all Processor Sockets during testing, then the system must be populated to its maximum functionality. These systems will be subject to the base idle state power allowance based on the number of sockets in the system.

- 657 6.2 Number of Units Required for Testing
- 658 6.2.1 Representative Models shall be selected for testing per the following requirements:
- i. For certification of an individual product configuration, the unique configuration that is
 intended to be marketed and labeled as ENERGY STAR is considered the Representative
 Model.
- ii. For certification of a product family of all product types, one product configuration for each
 of the four points identified in definitions 1.G)2) within the family are considered
 Representative Models. All such representative models shall have the same Common
 Product Family Attributes as defined in 1.G)1).
- 666 6.2.2 All product configurations within a product family that is submitted for certification must meet 667 ENERGY STAR requirements, including products for which data is not reported.

Note: EPA has removed the section previously titled "Qualifying Families of Products" from Version 2.1 as the contents previously found in that section are sufficiently covered in the product family definition and Section 6.2.2 above.

³ For the purposes of this document, the most current SERT version will be listed in the most recently published Servers 3.0 Clarification Memo, located on the Enterprise Servers Specification Version 3.0 website (https://www.energystar.gov/products/spec/enterprise_servers_specification_version_3_0_pd)

671 **7 EFFECTIVE DATE**

- 672 7.1.1 <u>Effective Date</u>: This ENERGY STAR Computer Servers specification shall take effect on **TBD**. To
 673 certify for ENERGY STAR, a product model shall meet the ENERGY STAR specification in effect
 674 on its date of manufacture. The date of manufacture is specific to each unit and is the date on
 675 which a unit is considered to be completely assembled.
- Future Specification Revisions: EPA reserves the right to change this specification should
 technological and/or market changes affect its usefulness to consumers, industry, or the
 environment. In keeping with current policy, revisions to the specification are arrived at through
 stakeholder discussions. In the event of a specification revision, please note that the ENERGY
 STAR certification is not automatically granted for the life of a product model.

681 8 CONSIDERATIONS FOR FUTURE REVISIONS

- 682 **8.1 TBD**
- 683

APPENDIX A: Sample Calculations

686 Idle State Power Requirements

To determine the Maximum Idle State Power Requirement for ENERGY STAR certification, determine the
 base idle state level from Table 3 or Table 4, and then add power allowances from Table 5 (provided in
 Section 3.6 of this Eligibility Criteria). An example is provided below:

691 EXAMPLE: A standard single processor Computer Server with 8 GB of memory, two storage devices, and 692 two I/O devices (the first with two 1 Gbit ports and the second with six 1 Gbit ports).

1. Base allowance:

694 695 696

697

698 699

693

690

- a. Determine base idle allowance from Table 3 for one socket servers, provided for reference below.
- b. The example server is evaluated under Category A and could consume no more than 37.0 watts in Idle to certify for ENERGY STAR.

Category	Resilient	Base Idle State Power Allowance, P _{BASE} (watts)
Α	No	37.0
В	Yes	130

700 701 702

703

2. Additional Idle Power Allowances: Calculate additional idle allowances for extra components from Table 5, provided for reference below.

System Characteristic	Applies To	Additional Idle Power Allowance
Additional Power Supplies	Power supplies installed explicitly for power redundancy	10.0 watts per Power Supply
Storage Devices	All installed storage devices	4.0 watts per Storage Device
Additional Memory	Installed memory greater than 4 GB	0.25 watts per GB
Additional Buffered DDR Channel	Installed buffered DDR Channels greater than 8 channels (Resilient Servers only)	4.0 watts per Buffered DDR Channel
Additional I/O Devices (single connection speed rounded to nearest Gbit)	Installed Devices greater than two ports of 1 Gbit, onboard Ethernet	< 1 Gbit: No Allowance = 1 Gbit: 2.0 watts / Active Port > 1 Gbit and < 10 Gbit: 4.0 watts / Active Port ≥ 10 Gbit: 8.0 watts / Active Port

704 705 706

707

708

- a. The example server has two hard drives. It therefore is provided with an additional 8.0 watt allowance for each hard drive (2 Storage Devices x 4.0 watts).
- b. The example server has 4 GB in excess of the base configuration. It therefore is provided with an additional 1.0 watt allowance for memory (4 extra GB x 0.25 watts/GB).

709 710 711 712 713 714 715	3.	 c. The example server has one I/O card that does not qualify for an adder: the first device has only two Ethernet ports and does not exceed the two-port threshold. Its second device does qualify for an adder: the server is provided with an additional 12.0 watt allowance for the device (six 1Gbit ports x 2.0 watts/active port). Calculate the final idle allowance by adding the base allowance with the additional power allowances. The example system would be expected to consume no more than 58.0 watts at Idle
716		to qualify (37.0 W + 8.0 W + 1.0 W + 12.0 W).
717	Addit	ional Idle Allowance - Power Supplies
718 719	The fol	lowing examples illustrate the idle power allowances for additional power supplies:
720 721 722	Α.	If a Computer Server requires two power supplies to operate, and the configuration includes three installed power supplies, the server would receive an additional 10.0 watt idle power allowance.
723 724	В.	If the same server were instead shipped with four installed power supplies, it would receive an additional idle power allowance of 20.0 watts.
725	Addit	ional Idle Allowance - Additional Buffered DDR Channel
726 727	The fol	lowing examples illustrate the idle power allowances for additional buffered DDR channels:
728 729 730	Α.	If a resilient Computer Server is shipped with six installed buffered DDR channels, the server would not receive an additional idle power allowance.
731 732 733 734	B.	If the same resilient server were instead shipped with 16 installed buffered DDR channels, it would receive an additional idle power allowance of 32.0 watts (first 8 channels = no additional allowance, second 8 channels = 4.0 watts x 8 buffered DDR channels)
735 736	Note : E Versior	EPA has revised the examples in Appendix A to reflect the new proposed idle state requirements in 3.0.

738		APPENDIX B:
739 740		IDENTIFYING RESILIENT SERVER CLASS
741	Α.	Processor RAS and Scalability - All of the following shall be supported:
742 743		(1) <i>Processor RAS</i> : The processor must have capabilities to detect, correct, and contain data errors, as described by all of the following:
744 745		 (a) Error detection on L1 caches, directories and address translation buffers using parity protection;
746 747 748		(b) Single bit error correction (or better) using ECC on caches that can contain modified data. Corrected data is delivered to the recipient (i.e., error correction is not used just for background scrubbing);
749 750 751 752		(c) Error recovery and containment by means of (1) processor checkpoint retry and recovery, (2) data poison indication (tagging) and propagation, or (3) both. The mechanisms notify the OS or hypervisor to contain the error within a process or partition, thereby reducing the need for system reboots; and
753 754 755 756		(d) (1) Capable of autonomous error mitigation actions within processor hardware, such as disabling of the failing portions of a cache, (2) support for predictive failure analysis by notifying the OS, hypervisor, or service processor of the location and/or root cause of errors, or (3) both.
757 758 759 760 761		(2) The processor technology used in resilient and scalable servers is designed to provide additional capability and functionality without additional chipsets, enabling them to be designed into systems with 4 or more processor sockets. The processors have additional infrastructure to support extra, built-in processor busses to support the demand of larger systems.
762 763 764 765 766		(3) The server provides high bandwidth I/O interfaces for connecting to external I/O expansion devices or remote I/O without reducing the number of processor sockets that can be connected together. These may be proprietary interfaces or standard interfaces such as PCIe. The high performance I/O controller to support these slots may be embedded within the main processor socket or on the system board.
767 768	В.	<i>Memory RAS and Scalability</i> - All of the following capabilities and characteristics shall be present:
769		(1) Provides memory fault detection and recovery through Extended ECC;
770		(2) In x4 DIMMs, recovery from failure of two adjacent chips in the same rank;
771 772 773		(3) Memory migration: Failing memory can be proactively de-allocated and data migrated to available memory. This can be implemented at the granularity of DIMMs or logical memory blocks. Alternatively, memory can also be mirrored;
774 775 776 777 778 779 780 781		(4) Uses memory buffers for connection of higher speed processor -memory links to DIMMs attached to lower speed DDR channels. Memory buffer can be a separate, standalone buffer chip which is integrated on the system board, or integrated on custom-built memory cards. The use of the buffer chip is required for extended DIMM support; they allow larger memory capacity due to support for larger capacity DIMMs, more DIMM slots per memory channel, and higher memory bandwidth per memory channel than direct-attached DIMMs. The memory modules may also be custom- built, with the memory buffers and DRAM chips integrated on the same card;
782 783		(5) Uses resilient links between processors and memory buffers with mechanisms to recover from transient errors on the link; and
784		(6) Lane sparing in the processor-memory links. One or more spare lanes are available

705		
785	for lane failover in the event of permanent error.	
786 787	C. <i>Power Supply RAS</i> : All PSUs installed or shipped with the server shall be redundant and concurrently maintainable. The redundant and repairable components may also be	
788 789	housed within a single physical power supply, but must be repairable without requiring the system to be powered down. Support must be present to operate the system in	
790	degraded mode when power delivery capability is degraded due to failures in the power	
791	supplies or input power loss.	
792 793	D. Thermal and Cooling RAS: All active cooling components, such as fans or water-based cooling, shall be redundant and concurrently maintainable. The processor complex must	
794	have mechanisms to allow it to be throttled under thermal emergencies. Support must be	
795 796	present to operate the system in degraded mode when thermal emergencies are detected in system components.	
797	System Resiliency – no fewer than six of the following characteristics shall be present in	
798	the server:	
799	(1) Support of redundant storage controllers or redundant path to external storage;	
800	(2) Redundant service processors;	
801	(3) Redundant dc-dc regulator stages after the power supply outputs;	
802	(4) The server hardware supports runtime processor de-allocation;	
803	(5) I/O adapters or hard drives are hot-swappable;	
804 805	 (6) Provides end to end bus error retry on processor to memory or processor to processor interconnects; 	
806 807	(7) Supports on-line expansion/retraction of hardware resources without the need for operating system reboot ("on-demand" features);	
808 809 810	(8) Processor Socket migration: With hypervisor and/or OS assistance, tasks executing on a processor socket can be migrated to another processor socket without the need for the system to be restarted;	
811 812	(9) Memory patrol or background scrubbing is enabled for proactive detection and correction of errors to reduce the likelihood of uncorrectable errors; and	
813	(10)Internal storage resiliency: Resilient systems have some form of RAID hardware in	
814 815	the base configuration, either through support on the system board or a dedicated slot for a RAID controller card for support of the server's internal drives.	
816	. System Scalability – All of the following shall be present in the server:	
817 818	(1) Higher memory capacity: >=8 DDR3 or DDR4 DIMM Ports per socket, with resilient links between the processor socket and memory buffers; and	
819	(2) Greater I/O expandability: Larger base I/O infrastructure and support a higher	
820 821	number of I/O slots. Provide at least 32 dedicated PCIe Gen 2 lanes or equivalent I/C bandwidth, with at least one x16 slot or other dedicated interface to support external)
822	PCIe, proprietary I/O interface or other industry standard I/O interface.	